

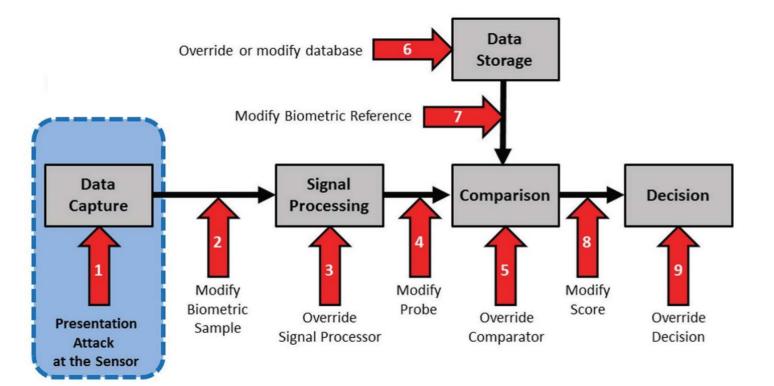
FACING-2 Task - Liveness Detection

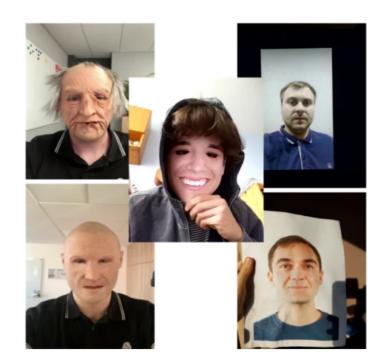
Diogo Nunes – diogo.nunes@isr.uc.pt

Coimbra | 2023-05-16

Overview

 Presentation Attacks (PAs) try to bypass facial recognition systems by impersonation of legitimate users, giving rising to a system security concern





Objectives

- The objective is then to develop a PAD/Liveness detection system capable of differentiate an attack from bonafide presentation, considering as requirements:
 - High portability;
 - · Low resource consumption;
 - · Based only on RGB images/videos;
 - High generalization performance.

Challenges

- The manifestation of spoof artifacts highly depends on:
 - · Capturing device (resolution / distortion / image quality)
 - Illumination
 - · Background
 - Spoof instrument and its particularities
 - · Specific printer for print attacks (InkJet printer / laser printer / photograph printer)
 - · Specific display device **for replay attacks** (resolution / distortion / image quality)
 - Mask material for **mask attacks** (paper / silicone / latex)

Challenges

- The problem is that the majority of PAD datasets comprise low variation in the mentioned aspects.
- Resulting in overfit to the training dataset/domain.
- Which leads to the use of techniques/solutions in the perspective of Domain Generalization

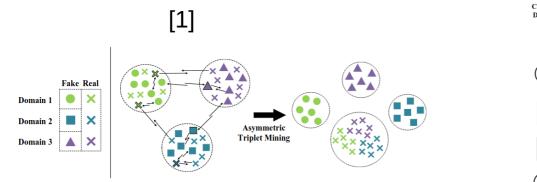
Domain Generalization for PAD

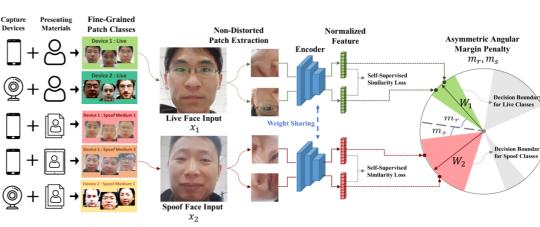
- A common approach is to try to filter out domain specific features (recurring to multiple training domains), this is commonly achieved in two ways:
 - Metric Learning
 - · Adversarial Learning



Metric Learning

• Recurs to the use of embedding loss functions to manipulate the feature space and cancel domain specific features.





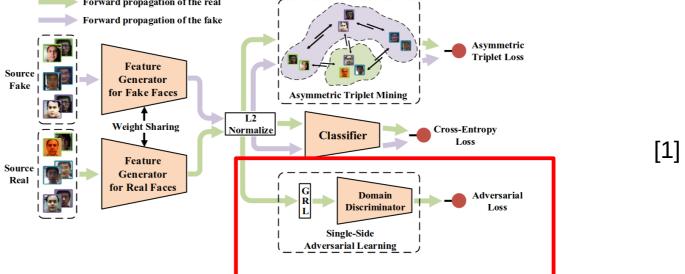
[2]

[1] Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen. Single-side domain generalization for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8484–8493, 2020

[2] Chien-Yi Wang, Yu-Ding Lu, Shang-Ta Yang, and Shang-Hong Lai. PatchNet: A simple face anti-spoofing framework via fine-grained patch recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20281–20290, 2022

Adversarial Learning

- A classifier/discriminator tries to predict the source domain of a given set of features, its success is a cost function for the feature extraction procedure
- In the optimal state, the discriminator is not able to predict the source domain, and thus, the dataset/domain specific features were "eliminated"



SoTA Results

Method	$\mathbf{OCI} ightarrow \mathbf{M}$		OMI →C		$OCM \rightarrow I$		ICM \rightarrow O	
	HTER(%)	AUC(%)	HTER(%)	AUC(%)	HTER(%)	AUC(%)	HTER(%)	AUC(%)
MMD-AAE [9]	27.08	83.19	44.59	58.29	31.58	75.18	40.98	63.08
MADDG [16]	17.69	88.06	24.50	84.51	22.19	84.99	27.98	80.02
SSDG-M [7]	16.67	90.47	23.11	85.45	18.21	94.61	25.17	81.83
DR-MD-Net [20]	17.02	90.10	19.68	87.43	20.87	86.72	25.02	81.47
RFMeta [17]	13.89	93.98	20.27	88.16	17.30	90.48	16.45	91.16
NAS-FAS [26]	19.53	88.63	16.54	90.18	14.51	93.84	13.80	93.43
D2AM [3]	12.70	95.66	20.98	85.58	15.43	91.22	15.27	90.87
SDA [21]	15.40	91.80	24.50	84.40	15.60	90.10	23.10	84.30
DRDG [11]	12.43	95.81	19.05	88.79	15.56	91.79	15.63	91.75
ANRL [10]	10.83	96.75	17.83	89.26	16.03	91.04	15.67	91.90
SSAN-M [22]	10.42	94.76	16.47	90.81	14.00	94.58	19.51	88.17
SSDG-R [7]	7.38	97.17	10.44	95.94	11.71	96.59	15.61	91.54
SSAN-R [22]	6.67	98.75	10.00	96.67	8.88	96.79	13.72	93.63
PatchNet [19]	7.10	98.46	11.33	94.58	13.40	95.67	11.82	95.07
SA-FAS [18]	5.95	96.55	8.78	95.37	6.58	97.54	10.00	96.23

However...

- A new article [4] accepted at CVPR2023 states that the results presented before are respective to the epoch that gave the best test performance, independent if it is the first epoch, second, or last.
- Also states, that the test performance should be assessed by the mean and std of the last few epochs, in order to: (1) prevent search biases; (2) reveal unstable training procedures; (3) mimic a realistic scenario where the test domain is not available, even as training stopping criteria.

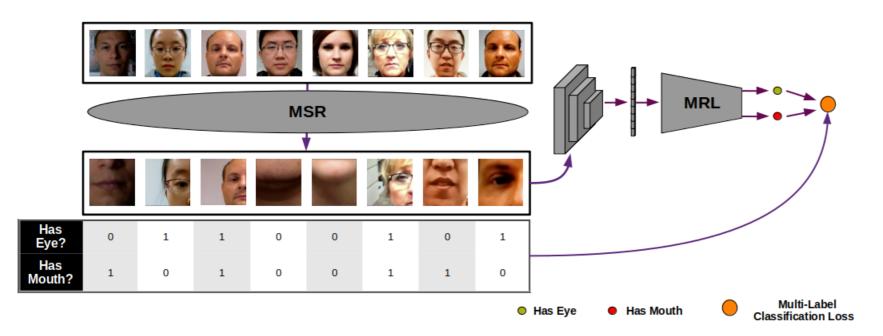
[4] Sun, Yiyou, et al. "Rethinking Domain Generalization for Face Anti-spoofing: Separability and Alignment." arXiv preprint arXiv:2303.13662 (2023).

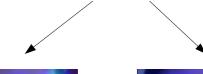
With a new and fairer comparison setting

Method	$\mathbf{OCI} \rightarrow \mathbf{M}$	$\mathbf{OMI} ightarrow \mathbf{C}$	$\mathbf{OCM} ightarrow \mathbf{I}$	$\mathbf{ICM} \rightarrow \mathbf{O}$	
	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	
SSDG-R [7]	14.65 1.21 / 91.93 1.35 / 53.68 2.56	28.76 ^{0.89} / 80.91 ^{1.10} / 41.47 ^{2.68}	22.84 ^{1.14} / 78.67 ^{1.31} / 50.80 ^{5.95}	15.83 ^{1.29} / 92.13 ^{0.96} / 66.54 ^{4.00}	
SSAN-R [22]	21.79 3.68 / 84.06 3.78 / 51.91 4.28	26.44 ^{2.91} /78.84 ^{2.83} /45.36 ^{4.29}	35.39 8.04 / 70.13 9.03 / 64.00 2.70	25.72 ^{3.74} /79.37 ^{4.69} /36.75 ^{5.19}	
PatchNet [19]	25.92 1.13/ 83.43 0.87/ 38.75 8.31	36.26 1.98/ 71.38 1.89/ 19.22 3.85	29.75 ^{2.76} / 80.53 ^{1.35} / 54.25 ^{2.18}	23.49 1.80 / 84.62 1.92 / 36.39 6.83	
SA-FAS [18]	14.36 ^{1.10} / 92.06 ^{0.53} / 55.71 ^{4.82}	$19.40^{0.66}$ / $88.69^{0.67}$ / $50.53^{3.60}$	11.48 ^{1.10} / 95.74 ^{0.55} / 77.05 ^{3.26}	11.29 ^{0.32} / 95.23 ^{0.24} / 73.38 ^{1.64}	

- They found out that domain-invariant techniques cause the training procedure to be highly unstable and lead to a final solution with poor generalization power
- The authors of SA-FAS, on the other hand, encourage the domain separability, and focus on the alignment task, specifically, in the regularization between live-to-spoof transitions and enforcing the same transition direction for all domains.

Approach: Learning Face Regions





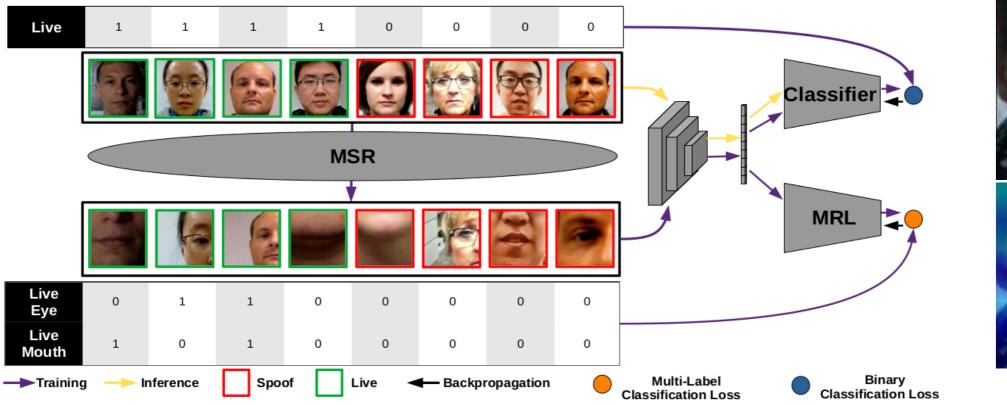
VisTeam 12

Transition to Liveness Detection:

Is the network able to learn what is a real/bonafide eye or mouth?

- The previous question to the network was if the image contains an eye or a mouth, or both
- The new question is if the image contains a real eye or mouth

Our Approach



VisTeam 14

Results

Method	$\mathbf{OCI} \rightarrow \mathbf{M}$	$\mathbf{OMI} ightarrow \mathbf{C}$	$\mathbf{OCM} ightarrow \mathbf{I}$	$ICM \rightarrow O$	
	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	HTER/AUC/TPR@FPR=5%	
SSDG-R [7]	14.65 ^{1.21} / 91.93 ^{1.35} / 53.68 ^{2.56}	28.76 ^{0.89} /80.91 ^{1.10} /41.47 ^{2.68}	22.84 ^{1.14} / 78.67 ^{1.31} / 50.80 ^{5.95}	15.83 1.29 / 92.13 0.96 / 66.54 4.00	
SSAN-R [22]	21.79 3.68 / 84.06 3.78 / 51.91 4.28	26.44 ^{2.91} /78.84 ^{2.83} /45.36 ^{4.29}	35.39 8.04/ 70.13 9.03/ 64.00 2.70	25.72 ^{3.74} /79.37 ^{4.69} /36.75 ^{5.19}	
PatchNet [19]	25.92 1.13/ 83.43 0.87/ 38.75 8.31	36.26 1.98/ 71.38 1.89/ 19.22 3.85	29.75 ^{2.76} / 80.53 ^{1.35} / 54.25 ^{2.18}	23.49 1.80 / 84.62 1.92 / 36.39 6.83	
SA-FAS [18]	14.36 ^{1.10} / 92.06 ^{0.53} / 55.71 ^{4.82}	$19.40^{0.66}$ / $88.69^{0.67}$ / $50.53^{3.60}$	11.48 ^{1.10} / 95.74 ^{0.55} / 77.05 ^{3.26}	$\boldsymbol{11.29}^{0.32}/\boldsymbol{95.23}^{0.24}/\boldsymbol{73.38}^{1.64}$	
IFRLL (ours)	14.82 ^{0.60} / 93.40 ^{0.72} / 74.31 ^{1.01}	$\boldsymbol{13.22}^{\ 1.10} / \ \boldsymbol{94.64}^{\ 0.46} / \ \boldsymbol{71.27}^{\ 3.28}$	18.53 ^{1.03} / 86.54 ^{0.48} / 66.36 ^{2.63}	20.21 ^{1.45} / 94.69 ^{0.28} / 73.06 ^{1.81}	

- SoTa improvement in 2 of the four protocols
- Limitations: resolution dependent performance

Next steps

- Analysis on more facial regions
- Exploration of resolution-invariant techniques
- Video-based face region solution



Questions, ideas, suggestions, ...

